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ABSTRACT

An analytical study is made of the flow past hydro-

foils with large camber at arbitrary angles of attack.

The class of hydrofoils considered is restricted to

those whose hodograph plane has a shape very near that

bounded by two circular arcs.. Under this assumption a

general method is derived to calculate the parameters of

the flow. In addition, a short-cut procedure is intro-

duced for estimating the lift and drag coefficients. As

a numerical example to illustrate the theory the flow

past a circular-arc foil is considered. The force

coefficients are in good agreement with the values

computed by Rosenhead.
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1. INTRODUCTION. If a well-streamlined body is moved

through water at a sufficiently high speed, cavitation

will occur and become more severe as the speed increases.

Because of the noise and structural damage which ordinar-

ily ensue, elaborate precautions are often taken to avoid

cavitation. Experience shows, however, that at the

design speeds proposed for present-day hydrofoil craft,

cavitation is, practically speaking, unavoidable. More-

over, if the zone of cavitation becomes so large that a

large vapor cavity is formed and remains attached to the

body (supercavitating flow), the flow regime is completely

changed and damage is often avoidable. The point of view

now taken is to assume that cavitation must occur and to

design hydrofoils, struts, and appendages accordingly.

In regard to lifting hydrofoils and propellers, the

analytical work of Tulin (1953) on supercavitating foils

has been of special significance because of the compara-

tive simplicity with which design parameters can be

estimated, provided that the camber and attack angle are

small. The recent extension of Tulin's theory by Chen

(1962) to include second-order terms has increased the

range of usefulness to intermediate values of camber and

attack angle (up to 15 or 20 degrees, say). Chen's theory,

which again is remarkably devoid of computational diffi-

culties, should suffice for the great bulk of practical

cases. For certain special configurations, however, it
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will be necessary to have in hand a theory which applies to

arbitrary foil shapes having large attack angle, large

camber, or a combination of both. Moreover, it is essential

to have available a more inclusive theory against which to

check the limits of application of the approximations of

Tulin and Chen.

If the angle of attack is large but the camber is small,

an excellent approximate theory might be developed by per-

turbing about the classical solution for a flat plate at

arbitrary incidence. The structure of this theory is

accordingly presented in Appendix A; however, no numerical

results have as yet been worked out.

To develop a more general analytical method, one would

naturally turn to the non-linear theory of Levi-Civita

(presented, for example, by Milne-Thompson, 1960). The

method has been applied by Brodetsky (1923), Rosenhead

(1928), and Wu (1956) to a limited variety of foil sections,

but the complexity of the calculations leaves something to

be desired. More recently, Wu (1962) has devised a non-

linear theory which overcomes most of the difficulties (Wu

and Wang, 1963). However, in general, there appears to be

justification for developing alternative lines of attack on

the general problem for two reasons. First, each theory

will have an inherent advantage in calculating a certain

class of foils; for example, the method of Wu should be

especially powerful in dealing with hydrofoils with flaps.
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Second, the various schemes all being in some sense

approximate, a chance is afforded of maintaining more con-

trol on the accuracy by checking the result of one analysis

against another.

In the present work, therefore, a theory is developed

to deal with a certain class of hydrofoils having rather

large camber and arbitrary angle of attack. The method of

analysis is such that the estimates of lift and drag are

expected to be very good if the foil has a smoothly curving

wetted camber line, and a hodograph plane nearly bounded by

two circular arcs. The efficacy of the method is illus-

trated by comparison with some numerical results given by

Rosenhead (1928). It almost goes without saying that a

thorough review and comparison of the several methods now

available would be most welcome.

2. HYDROFOILS WITH ZERO CAVITATION NUMBER. Let a curved

hydrofoil abc be set at an angle c in an infinite

stream with uniform velocity U. and a pressure p. at

infinity (Figure la). For sufficiently high values of U.

the flow will separate at both edges of the foil leaving a

cavity inside. If the pressure inside pc is equal to p.,

then the cavitation number will be equal to zero. The

cavitation number a is defined by the formula

Po- Pc

1 2
-2p U.



in which p is the fluid density. In this case the free

streamlines 01 and aT will extend to infinity. Take

ox to be the x-axis and the perpendicular at o as the

y-axis. For plane irrotational flow the complex potential

W can be defined as

W . C + i (1)

Here V is the velocity potential and * is the stream

function. If point b is taken as the origin for the W-

plane, it will be as shown in Figure lb. Mhe complex

velocity w is defined to be

1 dW u - v (2)

Here u and v are the velocity components in the x and

y directions respectively. The flow is assumed to be

steady and the pressure in the cavity to be constant;

consequently, the magnitude of the velocity on the free

streamlines a& and cI is constant and equal to U,.

Thus these streamlines are represented by a portion of the

circumference of a unit circle in the w-plane (Figure lo).

The velocity components at points a and a are given by

0 - U(l + a2 1/2 v, - OU.M(1 + ao2 (/)
0o0 0



2 -1/2 2 -1/2ua . U-(1 + "a) a - aa.(l + (4)

in which a and a are the absolute values of the
o a

slope at these points. Point b is a stagnation point.

For a snoothly curving foil the part abo will be

represented in the w-plane by a smooth continuous curve

passing through the three known points a, b and o. The

analysis will use a circular arc passing through the same

points as a basis to perturb around. This choice, which

is admittedly arbitrary, leads to a base flow for which

the conformal mappings are given in terms of elementary

functions.

3. METHOD OF ANALYSIS. If a relation between the

potential W and the velocity w can be found by confor-

mal mapping, the physical plane z can be constructed

from (2) by integration. The first step of mapping is

the rotation of the W-plane through an angle 0 where

is the angle made by the radius of the circular arc at

point b and the u-axis. Thus

W - (5)

It is convenient to map the W -plane onto a new half
pln * *i * *

plane + iTI . The relation between the w - and
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C-planes is taken to be of the form

wc - iC*- wc a (6)
1 - g(C*)

where

C 1 M N + N N] (7)

x - -~ ~a](8)

FwI

M = x-](9)
Wa

N- 
(10)

In these expressions K is the angle of intersection

between the circular arcs cIa and abc.

The C -plane will be as shown in Figure ld. The

circular arc abc in the hodograph plane will be

represented by the line segment

0 :r-T, =0
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where the constant T is defined by

T N- X .

The curve abe which represents the hydrofoil. will

deviate from that segment as shown. The free streamlines

aI and oi will be represented respectively by the per-

tions £* f 0 and T I C* 1 0 of the 9*-axis.

Now define a half plane C + t1ij wiith the position

of points a,b,c the same as those in the C -plane.

Assume the transformation from the C*-plane to the C-

plane to be of the form

C - C + C(C) (11)

Here e(C) is an unknown complex analytic function of C

that can be separated into real and imaginary parts as

follows

C(CI) - X(Cq) + iY(£,•) (12)

Since both C* and C are real on the lines al and

cl, then the imaginary part in equation (12) has to

vanish on those lines, or

Y(9,o) - 0 -o (13)
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Thus Y(9,11) is the imaginary part of an analytic

function and hence satisfies the differential equation

Y cc*Yn .0 1 a 0 (14&)

Assume that on the part abc, Y will be represented in

the general Fourier series form

Y(C, 0) , ýO [a n sin(nTng). b~ n008 (nI~rr9l

0S '
0 :9 9 : T (11 )

The boundary-value problem given by equations (13), (14)

and (15) has the solution

1 ; aF n sin(nTirs) + bn cos(nTns)

& Oos5tls-))] ds e- dt (16)

The analyticity of €(C) implies that

y x (17)
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From equations (16) and (17) the relation for X(•,T1)

is found to be

x(f,'l)o - 1 .ff(an sin-(nTrrs) + b n cos(nlTrs)1.

"Sin"t(s - 9)]ds e' dt (18)

Relations (16) and (18) completely define C(C) in

terms of the unknown constants an and b,.

By the theorem of Schwarz and Christoffel, the

complex potential is mapped onto the same C-plane

through the transformation

W. (1C - 1)2 (19)

where Ca is the velocity potential at point a. From

the definition of W given by (2) and (5) one finds

that

dz e 1 dW (20)
-T -u;-



* dW
A substitution for W and for by differentiating

(I1) leads to the integral

2cp a e-i) dC (21)

Co

Here

* *
W - C(C)

F(C) - a (22)

C(C) a 1 (M - N) +N] K/Tr(3
A €Nt (;j + I(23)

The right-hand side of equation (21) involves the

function C(C) which is determined in terms of the

unknown constants a and b * To evaluate the firstn n

m of these constants use can be made of a method

similar to that introduced by Naiman as summarized by

Abbott and Von Doenhoff (1959). Divide the arc abc

in both the z- and C-planes into (m + 1) equal

segments. Make a substitution for each point at the

end of every segment. For example, at the end of seg-

ment number k the equation will be

10



Xk + iy U4 ak/ (ml) dC (24)

k - l, 2 ,...pm

Thus one obtains 2(m+l) equations involving the con-

stants ao, al, ... , am, bo, bl, ... , bm. Solving

these equations simultaneously will lead to the numeri-

cal value of each of these constants. The number m

can be ohosenas large as the accuracy requires.

The determination of the constants defines w and

hence w completely. The net pressure at an;, point of

the lamina is given by

1 2 2

p as PUM (1 -(•)I } (25)

where Jw()I is the absolute value of W(C) computed

from ( 5).

The components of the total force on the lamina are

found by integrating equation (25)t

-. U2iT ( - Iw(40I )(.hIdt (26)

F. ½pU .L - IwyI cc•) d, (27)
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Thus the lift coefficient CL will be given by

S2(F 0os 0 - Fr sin cy)
CL -(8

PU'-B

Similarly the drag coefficient CD can be found from the

relation

S2(F cos a + F sin (y)

p U2=B

4. HYDROFOILS WITH FINITE CAVITATION NUMBER. In the case

that the pressure pc inside the cavity is different from

p. the free streamlines al and cI seem to close at a

finite distance and the length of the cavity will be no

longer infinite. In this case the velocity on the free

streamline V will be related to U. by the relation

1 2 1- + 1 2 (30)
7pv " (p2 cp oo

The mathematical model to be used here (Figure 2a) is the

same as the one introduced by Wu (1962) for cavity flow

around flat plates. Two curved plates dI and d'I are

supposed to extend to infinity where the pressure and

12



velocity on both plates change from pc and V at points

d and d'• to p. and U. as they reach points I. In

general the plates have a curvature that is unknown at the

outset. The complex potential (Figure 2b) and the complex

velocity planes are drawn with the positions of points d

and d' as indicated. For convenience, however, in this

case the complex velocity is defined as

1 dW u v (31)f -V z-• . V " T (1

Define the Cl-plane to be

-- * * (32 )

W -W W ~Wj(2

where w has the same definition given by (5). Choose

the plates dl and d'I to be of such a shape to map onto

a vertical slit as shown in Figure 2d. By means of the

Schwarz-Christoffel theorem, the C1 -plane can be trans-

formed to a half plane p (Figure 2e). In general the

shape abc will not transform into the axis as indicated,

but must be mapped according to an additional transforma-

tion similar to the procedure of the foregoing section.

The W-plane and p-plane are also easily related by the

method of Schwarz and Christoffel.
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5. A RAPID METHOD FOR ESTIMATING LIFT AND DRAG COEFFICIENTS.

The method introduced here is a means to get a fast estimate

for the lift and drag coefficients based on the assumption

that the free streamline for the foil of interest is very

close to that computed from the basic flow for which the

hodograph boundary consists of two circular arcs. In effect

a correction is made on the wetted foil surface while the

proper boundary condition on the free streamlines is ignored.

First, assume that

W =.CW: g(c) WJ + 'T c) (33)i-g W•

on the curve abc in the C-plane and, second, assume that

T(C,O) a m ezxp [.'r ] (34)
-~ c

From the above two relations and the definition of W and

w the physical plane is described by the formula

14



____ a- 1)d -Zml( 1) exp [2Trmit/9Z:~ r(c I2) dC +

9 lam exp (2¶rmi9/§ 2

+ 73 - +

C

By substituting for C and z at corresponding points

the above relation yields a set of simultaneous equations

for the complex constants a . Substitution of these con-m

stants in (34) will define W along abc. The lift and

drag coefficients may then be formed form (26) and (27).

As an example of the method consider the hydrofoil to

be a circular arc subtending an angle "/3 set in the

stream at an angle c' which varies from 0 to r/2. The

cavitation number is zero. The velocity components at

points a and c will be

Wa . 'f-ýi c "+

The values of the constants X and M are

S 1 i., 13 341

15



Table I gives the values of the constant N for selected

values of a. The constants a have been evaluated bym

matching the conditions from equation (33) at ten points

along the surface of the foil. The resulting values for

the force coefficients are given in Table II. Figure 3

shows that the agreement with the computations of Rosenhead

is very satisfactory.
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APPENDIX A

PERTURBATION OF THE FLOW PAST A FLAT PLATE

In the method of Tulin (1933) the flow about a super-

oavitating foil is regarded as. a porturbatio-n of a uniform

flow. Thus both the attack angle and camber are restricted.

An alternative scheme would use the cavity flow about a flat

plate as a basis for perturbation. Such a scheme is out-

lined here, up to terms of the second order. The camber must

be in some sense small, but there is no limitation on angle

of attack.

A.1 METHOD OF ANALYSIS. Let the cambered foil a*b*c* be

set such that the chord a*c* makes an angle a with the

direction of the flow as shown in Figure 4. Let a*c* be

considered as the x-axis, and the line perpendicular at

point a* be the y-axis. Assume that the maximum deflection

of the foil is h and the chord length is B. Let the small-

ness parameter 6 be defined by

0 0 h/B -,l

It is now assumed that the stream function " satisfies the

Laplace equation

Ox y (A.,)
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and moreover that it can be expressed in the form

0(x,y) = *o(x,y) + 6 1(x,y) + 6 2 *2 (iy) + ... (A.2)

in which # (X,y) is the stream function if the foil is

replaced by a flat plate ao. Also let the ordinate y

for the lamina a*bec* be given by the relation

y - 61(2)

The first objective of the analysis is to formulate and solve

the appropriate boundary value problems for the determination

of * (x,y) and the first- and second-order perturbation

terms # 1 (x,y) and * 2 (xy) . Since 6 is for the moment

arbitrary, it follows from (A.1) and (A.2) that *0o #1.' *29

... satisfy the Laplace equation. Determination of the

boundary conditions must now be considered. Assign for the

streamlines I*b*a*I*, I*b*c*I* the values = 0. Then on

a*b*o* we will have the condition

'Y[z,6Tlz)l -o[,6[(x)( + * 6,l[x,6T(X))

+ 6 2 
2 [x,6¶I(x) + .... - 0

Expanding the terms in the right hand side by means of a

Taylor series leads to the relation

x(,O) + 6l(x) # oyx0) + 1 62 21() oy(z,0) + ... +

0 (x, 7OYY

+ 6*1 (x,0) + 682 I(x) *ly (1O) + *ee

l8



+ 6822(1,0) + ... - 0

By equating the terms with like powers of 6 we obtain the

relations

to (x,0) - 0 (A.3)

I(x) (oyl, o) + #1(2,0) - 0 (A.4)

'12 (x) *oyy(xO) + 1(x) *lly(xO) + *2(1xO) - 0 (A.5)

Let xoy° represent the values of xy on the free

surface for the case of a flat plate, as indicated in Figure 4.

Assume that the coordinates x,y of the free streamline for

the cambered foil a*b*c* to be given in the form

Y = YO'

x W 1 0 + 2 ((y) + 6.2 (A.6)

Using the fact that the free surface is a streamline, we

obtain the relation

19



+ 6t,(y) + 6 2 2y) + 0,,yo0  + 6CO1 (o + 6 2 
2 (y) +...,yo)

+ 6*lxo0 + 6ll(y) + 62C21y) * .,*,yo) + 2, 2xo0 + 6C 1 (y) + 62 92 (y)+ *..,yl

+ ... - 0

An expansion by Taylor series as before leads to the following

boundary conditions

#0(XoYo) - 0 (A.7)

91 (y) *ox (x ,y) + *1(xoyo) - 0 (A.8)

(Y ox (Xo ,Y) + *I(Y) (•ox( ,yO)

+ (Y)*ly (X oyo) + 42 (xoyo) - 0 (A.9)

One more condition on the free surface is that the resultant

velocity V is constant, or

20



V 2  + [6CTI( + 62 22y *sy

~. (+ 69, (Y) + a 2 t2 (Y) + .sy

A substitution for 4 i and )T/yfrom (A.2) leads to

the following results:

v [4*XX(xiy )+ 6. 6
1 (y) #*x (z py + 2 92 (y) tox (x ,9yo)

* 1~62 92(Y) 4 z t) *go+ 6# (x~ py) 6 2 t(Y) t*.,(z ,y0)

* 6 2 xyo ) + 2

+ [oy (x OPYO)+ 69(y *oyx (x 0,y0 ) + 6 2(y) toy (x OYO)

+ 82 t (Y) *0yx 1 (x oy 0 )+*.*+ 6# 1 (x fyo )+ 6 2~ Yy lyz (Xpo

+ ... + 8 2*2 (x o ) + see2 (A.10)
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Equating terms with like powers of 6 as before results in

the relations

(V)(" * *e*1 +.o )2 *** + (A.l21

1 ~)(ox oxx + oytoyx) +ox lx + oytly -0( 2

2 2 2

2 x lx+* 2%(y)*0  + t 2) W * +1()oxx 1x 2 oxoxx 1 ox oxxx

o 29 +* 2#2 2

1( ox xx + 2ox*2x+gl(Y)*oyx +

+ 2 ¢2 (Y)*oytoyx + 92(Y)*oy oyxx +

+ 2C 1 (y)*oy
4 lyx + 2 *oy*2y - 0 (A.13)

In these expressions the derivatives of the stream function

tervis such as #eo Ix, "'0., are to be evaluated on the

unperturbed free streamline xo0 ,yo. Conditions (A.3),

(A.7) and (A.13) together with the differential equation

tox* + * " 0 (A.14)

formulate the boundary value problem for the zero order term

to (x,y). The solution for this problem for zero cavitation

number was given by Rayleigh (see Lamb, 1932) using the
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hodograph method. Since we are going to use this solution

in a different form for the development of the first- and

second-order terms, we will present it in the following

section.

A.2 SOLUTION FOR THE ZERO ORDER TERM. The physical plane

z, the complex potential plane W and the dimensionless

complex velocity plane w have the same definition as

before and are shown in Figure 5.

The new plane W-1 is also shown in the same figure.

Define the half plane t to be

t . -(l/W + W) (A.15)

-1

By using the Schwarz-Christoffel theorem the W is mapped

onto the half plane t and thus the relation between t and

W is given by the formula

Cw = (A.l6)
(t - 2 cos a)

where C is a constant dependent on the dimensions of the

lamina. A substitution in (A.15) with the value of W and

use of Eq. (A.16) leads to the relation

-2C dt U, (t - 2 cos u)3 dz

t -=_ _ _ _ __ _ _ _ d
Uw(t - 2 cos 2C d-

or we get the following differential equation to relate the

z and t planes:

23



1z2  2Ct C
2- + 2-t ÷ d rt-4 0 (A. 17 )

~dt) U(t- 2 cos a)(a U!(t - 2 con 0) 61

The above has the following solutiona

ro- ( J t- 2 cos a)3 dt 1A8)

where the complex constant C is determined by

1 -1 t +
I dt (A.19)

BBUM (t- 2 cos
-2

Substitution for t from (A15) results in the integral

C -2 -_2 + 1

" "- 1 - (2 cos ce) w +l dW (A.+2o )

Similarly by substitution for t in (A.16) we find W in

terms of W, thus

CW
2

2s 1A.211
S.w2 + (2 cos a) w + 11(

24



Since W + it 0 one sees that

to (X,y) - mg ( 2 + 2cso)W+1(A.22)

The relations (A.20) and (A.21) give z and W in terms

of' the parameter w and hence a complete solution for the

zero order term is accomplished.

A.3 SOLUTION FOR HIGHER ORDER TERMS. Consider now the

first order term #1which is represented by the following

boundary-value problem:

*Ix + -Y=0 (A.23a)

TIx t*y (x,O) + 1 (x,o) - 0 ?A.23b)

(Y *v 1,,o (_x(x 0,y0 ) + 0o (xA.23ctox

+ o0Xx (_"'o 1 '0 Y0) o+ * 0 ( 0~ ly cx0 (x -y ) (Z .23d)
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The last two conditions can be combined into the condition:

-l (xoYo) 1* 0z 0 ) *oxxXo, 9 yo) + *yx (zoyO) *oX (x ,yo)]

+*ox(zYol)[o 0 (x 0oYo) *lxl(xoYo) + toy (xoyO) *ly (xoYo)]. 0

(A.24)

Due to the complexity of the z-plane, we will use Eq. (A.20)

to map our domain into the semi-circular hodograph planes

W a w1 + iw 2 a u + iv

The last notation differs from that of the main section of

the report. In what follows it is convenient to introduce

the abbreviations listed below:

P ou x + *ovvx

tt ou y + *ovvy

R = lu UI + lvVx

S = lu~y + *lvvy

26



7he previous boundary value problem now assumes the formi

*luu + # lvv 0 0 (A.23a)

11(uO) #lu (UO) au + *IV (UO) av + (U10) a 0 (A.23b)
WY WY]

91 (U'V)P + # 1 (U'V) . 0 (A.23c)

91 (U'V) P[Puux + Pvvx] + QIFQ uu, + Qvv,] + PR + QR 0 (A,23d)
L

1he last two boundary condAtions are valid on the circum-

ference of the semi-circle in the hodograph plane and, as

before, can be combined into a single formula:

(U'l r 7 F I
-*I r ) I P 1P u U x + P V V X] + Q, L F u u 7 + P V V yj .1 + P IPR + QR]- 0 (A.26)

Me derivatives u x , V x I U y , V y are determined from Eq.

(A.20). It is obvious that this linear boundary value

problem can be solved numerically in the hodograph plane, by

taking as small a mesh an the accuracy requires.
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By a similar procedure the formulas for the second-

order term * 2 (x,y) are developed and are found to bet

*2uu + *2vv , 0 (A.27a)

12(u,vIP + I + I(uv)S + *(u,O) a 0 (A.27b)

•1(uv)[uQP u u P] + V~2(uT I I .~(~) u1  x v1~] + Clju~v)Q + *2 (ulv) - (A2c

2 •2(uv)Iu x u + vXPu]+ R2 + 2V2 (uv)peu P + V xP v ] +

+ u +vv[u P1 v )+ + v (U P + v P )vI+

+2 1 (u,V)P lu xP + xv]+ 2P [u1 *2 u + vx*2 v,] +

2+ P(u+vv[P 2 + 2t (UV)Q[luy Pu +v +

+ 9 uvQIuy( + v )U + 'y u Pu + * vv +

+2% 1(u,V)P Iu yR + v yR V] + 2Q lu y*2 u. + v Y* 2 v] - 0 (A.27d)

In principle the above problem can also be done numerically

in the semi-circular hodograph plane. The equations for the

interior points of the mesh will be the same but those for

the boundary points will have to satisfy the conditions in

(A.27) instead of (A.23).
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The relation for the free streamline is given in (A.6)

where 91(Y) and 9 2 (y) are to be determined from Eqs.

(A.8) and (A.9). The actual velocity components U and V

at any point are compu-ted from- the formula-as

"" 6O al 62 21

V(l 82 t2v. x-! + 6-- + 6 x

The local pressure at any point on the lamina may then be

computed by use of Bernoulli's equation, and the total force

obtained by an integration.
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APPENDIX B

LIST OF SYMBOLS

an ,am Fourier coefficients

B Chord length

CD Drag coefficient

CL Lift coefficient

F(O) Function defined by (22)

F ,Fy Force components

g(c) Function defined by (23)

H Maximum camber of foil

M Constant defined by (9)

N Constant defined by (10)

PC Pressure inside the cavity

p" Pressure at infinity

t Complex variable

T Constant defined by T = 1 - M/N

U Velocity magnitude at infinity

u,v Velocity components

V Velocity magnitude on the free streamline

W Complex potential W - tp + it

x,y Cartesian coordinates

z Physical plane, z a x + iy
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Angle of attack

8 Angle through which hodograph is rotated

6 Smallness parameter, 6 - H/B

€(C) Complex variable €(C) - X + iY

C Complex variable, C - + i1

Ci Complex variable

Angle of intersection of circle arcs in the

approximate hodograph plane

Constant defined by (8)

Complex variable

P Fluid density

a Cavitatitn number

T Function defined by (34)

CO Velocity potential

* Stream function

w Dimensionless complex velocity defined by (2)

W Complex variable defined by (5)
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TABLE I. VALUES OF N

U N

00 0.19253

300 0.49074

600 1.54024

90° 10.00725

TABLE 11. LIFT AND DRAG COEFFICIENTS

Attack Lift Coefficient CL Drag Coefficient C

Angle Present Present
(Y Theory Rosenhead Theory Rosenhead

0 0.8081 --- o.o4o6

30° .7091 0.7042 .4109 0.4038

400 .6620 -.- 484

500 .5784 .... 6796

600 .5132 .... 8620 ---

70 . 3226 .8740

900 0 0 .9531 -.9438
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TABLE III. VALUES OF THE COEFFICIENTS a m

m (Y-O0° (.300 & -60° U.900

-4 .07707 o03602 -. 00606 -,00102

-3 .02836 -. 19926 -. 03332 -. o3836

-2 .13751 -. 03389 .00209 .00225

-1 .17162 -. 16834 -. 03658 -. 05085

0 -. 23252 -. 07860 .00392 .0o428

1 .054419 -. 20105 -. 05209 -. 03745

2 -. 03o412 -. 08845 .oo041 .00302

3 -. 116138 -. 22033 -. 04130 -. 05387

4 .04903 -. 07925 .00384 .00117

5 -. 07337 -. 11827 -. 05260 -. 04211

-3_
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Figure 1. Conformal mapping planes for cambered hydrofoil

at zero cavitation number.
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Figure 2. Conformal mapping planes for hydrofoil at finite

cavitation number.

37



•t ' dI I I I I II a

1.2

060 --

Z D PRESENT THEORY C0  ___

I e ROSENHEAD
u /e

.6

o / \z/

/
/\

U 6

0%

.2

0 30 60 90
ATTACK ANGLE a IN DEGREES

Figure 3. Comparison of present theory with that of

Rosenhead (1928).
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Figure 4. Cambered foil considered as a perturbation of the

flow past a flat plate.
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Figure 5. Conformal mapping planes for flat plate at zero

oavitation number.

4o



DISTRIBUTION LIST

7.5 CO and Director I CO
DTMB, Code 513 ONRBR
Washington 7, D. C. 1000 Geary St.

San Francisco 9, Calif
Chief, Bu Ships

Navy Dept I CO
Washington 25, D. C. ONRBR

1 Codes 320 1030 E. Green St.
2 335 Pasadena 1, Calif
1 420
2 440 1 CO and Director

U. S. Naval Civil Engg Lab

1 CO and Director Port Hueneme, Calif
U. S. NEL
San Diego 52, Calif 1 Commander, U. S. NOL

White Oak, Silver Spring, Md

1 CO and Director
U. S. NUSL 1 Commander, U. S. NOTS
New London, Conn China Lake, Calif

Code 753
CNO
Washington 25, D. C. 1 Director

3 Codes 438 U. S. Naval Engg Exp Sta
1 461 Annapolis, Md
1 463
1 466 1 U. S. Navy Hydrographer

Navy Dept
1 Chief, Bureau of Yards and Docks Washington 25, D. C.

Navy Dept
Washington 25, D. C. 1 Dept of Meteorology and Oceanography

U. S. NPGS
1 CO Monterey, Calif

ONRBR
495 Summer St. 1 Beach Erosion Board, Corps of Engineers
Bo~t&f•l•,vMass U. S. Army

5201 Little Falls Rd., N. W.
1 CO Washington 16, D. C.

0NRBR
207 West 24th St. I U. S. Director
New York 11, N Y Waterways Exp Sta

Corps of Engineers, U. S. Army
1 co P.o. Box 637

ONRBR Vicksburg, Miss
The John Crerar Library Bldg, 10th
Floor, 86 E. Randolph St. 1 Comnmanding General
Chicago 1, -1l R and D Div

Dept of the Army
Washington 25, 0. C.

-1-



1 Chief of Engineers 1 UCLA
Dept of the Army Dept of Engg
Washington 25, D. C. Los Angeles 24, Calif

Dr. A. Powell
1 NBS

Hydraulic Lab 1 U of Minnesota
Washington 25, D. C. St. Anthony Falls

Fluid Mechanics Div Hydraulic Lab
Minneapolis 14, Minn

1 U. S. Coast and Geodetic Survey Dr. L. G. Straub
Washington 25, D. C.

1 Penn State U
1 Commandant (0AO) Ordnance Research Lab

U. S. CG University Park, Pa
Washington 25, D. C. Dr. G. F. Wislicenus

1 Library of Congress 1 Colorado State U
Washington 25, D. C. Dept of Civil Engg

Fort Collins, Colo
1 Chesapeake Bay Institute Prof. J. E. Cermak

John Hopkins U
laltimore, Md 1 State U of Iowa

Iowa Inst Hydraulic Research
1 Dept of Oceanography Iowa City, Iowa

U of Washington Dr. Hunter Rouse
Seattle, Wash

Stanford U
1 Dept of Oceanography Stanford, Calif

Oregon State College I Applied Math and Stat Lab
Corvallis, Ore 3 Dept of Civil Engg

Dr. E. Y, Hsu
1 Oceanographic Inst Dr. B. Perry

Florida State U Prof. R. L. Street
Tallahassee, Fla

1 New York U
1 Stevens Institute of Technology Courent Inst of Math Sci

Davidson Lab .25 Waverly Place
Castle Point Sta New York 3, N Y
Hoboken, N. J. Prof. J. J. Stoker

Dr. J. P. Breslin
1 New York U

Calif Inst of Tech University Heights
Pasadena 4, Calif Bronx. N Y

Dr. M. S. Plesset Dept of Oceanography
Dr. T. Y. Wu
Dr. A. J. Acosta 1 U of Maryland

Inst for Fluid Dynamics and Appl Math
1 M. I.T. College Park, Md

Fluid Dynamics Research Lab
Cambridge 39, Mass 1 U of Illinois

College of Engg
Dept of Theor and Appl Mech
Urbana, Ill
. Dr. J. M. Robertson

2-



1 Reneselaer Polytechnic Inst 1 Technical Research Group
Dept of Math 2 Aerial Way
Troy, N Y Syosset, L. I., N Y

Dr. Hirsh Cohen Dr. L. Kotik

1 Cornell Aeronautical Lab 1 Allied Research Assoc, Inc
4455 Genesee St. 43 Leon St., Boston 15, Mass
Buffalo, N Y

Mr. R. White 2 Hydronautics, Inc
200 Monroe St.

2 The John Hopkins U Rockville, Md
Dept of Mech Dr. M. P. Tulin
Baltimore 18, Md Mr. P. Eisenberg

Dr. R. R. Long
Prof. S. Correin 1 Oceanics, Inc

114 E. 40 St.
1 U of Michigan New York 16, NY

Dept of Aeronautical Engg Dr. P. Kaplan
Ann Arbor, Mich

Prof. R. B. Couch 1 Hydro-Space Assoc
3775 Sheridge Dr.

2 U of California Sherman Oaks, Calif
Dept of Engg
Berkeley 4, Calif 1 General Dynamics Corp

Dr. Wehausen Electric Boat Div
Groton, Conn

1 Texas A. and M. Research Foundation Mr. R. McCandliss
College Sta., Tex

Mr. B. W. Wilson 1 AiResearch Mfg Co
9851-9951 Sepulveda Blvd.

1 U of Connecticut Los Angeles 9, Calif
School of Engg Dr. B. R. Parkin
Storrs, Conn

1 Gibbs and Cox, Inc
Southwest Research Inst 21 West St.
8500 Culebra Rd New York, N Y
San Antonio 6, Tex

1 Dept of Mech Sci 1 Aerojet-General Corp
Dr. H. N. Abramson 6352 N. Irwindale Ave.

1 Appl Mech Reviews Azusa, Calif
C. A. Gongwer

I Midwest Research Inst
-425--Volker Blvd.- 1 Iockheed Aircraft Corp
Kansas City 10, Mo Missiles and Space Div

Mr. Zeydel Palo Alto, Calif
R. W. Kermeen

1 General Appl Sci Labs, Inc
Merrick and Stewart Ave. 1 Douglas Aircraft Go
Westbury, L. I., N Y 3000 Ocean Park Blvd.

Dr. F. Lane Santa Monica, Calif
A. E. Raymond

-3



1 The Martin-Marietta Co 1 Inst of Aerospace Sciences
Midd-le River, Md Aerospace Engg

J. D. Pierson 2 E. 64 St.
New York 21, N Y

1 Sperry Gyroscope Co
3 Aerial Way 1 Woods Hole Oceanographic Inst
Syosset, L. I., N Y Woods Hole) Mass

1 General Dynamics Corp Scripps Inst of Oceanography
Convair Div La Jolla, Calif
San Diego, Calif

Mr. H. E. Brooke

Grumman Aircraft Engg Corp
Dynamic Developments Div
Babylon, L. I., N Y

G. Wennagel

1 Boeing Aircraft Co
Seattle Div
Seattle, Wash

M. J. Turner

1 Edo Corp
College Point, N Y

1 North American Aviation, Inc
Columbus Div
4300 E. Fifth Ave.
Columbus, Ohio

D. A. King

1 NASA
1512 H St., N. W.
Washington 25, D. Co

1 Dept of the Navy
Bu Weaps
Airframe Design Div
Washington 25, D. C.

R. H. Handler

1-0 ASTIA
Arlington Hall Sta
Arlington 12, Va

Engg Societies Library
345 E. 47 St.
New York 17, N Y

-4-


